local geometry of deep learning

the

Richard Baraniuk Rice University

models

babylon

- Babylonians were **obsessed with data** and calculating (polynomial curve fitting)
- Knew about all the key theorems of the day and were extraordinary at predicting astronomical events
- Students learned math by working out large numbers of problems until they "understood" the general concept
- **Incapable** of scaffolding theorems together to create something larger

greece

- Ancient Greeks were **obsessed with models**
 - Ex: stars, sun, planets, moon are holes in a colossal cosmic colander that reveals the eternal fire beyond

 Such a (bad) model, inspired Eratosthenes to use geometry to deduce the radius of the earth

wikipedia.org

[Feynman, Toulmin, Pearl]

bell labs

 Shannon's model of a communication system inspired the development of information theory, which undergirds the present information age

models

signal processing / prediction using deep learning

deep network

Deep nets solve prediction tasks hierarchically

$$\widehat{\mathbf{y}} = f_{\Theta}(\mathbf{x}) = \left(f_{\theta^{(L)}}^{(L)} \circ \cdots \circ f_{\theta^{(3)}}^{(3)} \circ f_{\theta^{(2)}}^{(2)} \circ f_{\theta^{(1)}}^{(1)} \right) (\mathbf{x})$$

deep network

- Input, output: $\mathbf{x} =: \mathbf{z}_0$, $\widehat{\mathbf{y}}$
- Layer 1: $z_1 = \sigma(W_1 z_0 + b_1)$
 - Weight matrix: \mathbf{W}_{ℓ} deep net Biac vector: \mathbf{b}_{ℓ} parameters
 - Bias vector: \mathbf{b}_{ℓ}
 - Activation operator: σ
 Scalar activation function applied component-wise
 Ex: Rectified Linear Unit (ReLU), aka thresholding

• Deep net with
$$L$$
 layers

$$\widehat{\mathbf{y}} = \sigma^* (\mathbf{W}_L \sigma (\cdots \sigma (\mathbf{W}_2 \sigma (\mathbf{W}_1 \mathbf{z_0} + \mathbf{b_1}) + \mathbf{b_2}) \cdots) + \mathbf{b_L})$$

 $\mathsf{ReLU}(u) = \max(u, 0)$

11

learning

 $\{\mathbf{W}_{\ell}, \mathbf{b}_{\ell}, \ \ell = 1, \dots, L\}$

boat

bird

 Tune the parameters to minimize the total prediction error on the training data set using gradient descent

throwing caution to the wind

- Solving problems with **data not models**!
- **Highly nonlinear** approximant!
- Highly overparameterized! (typically many more parameters than training data points)
- Highly **nonconvex** loss function (error) to optimize! (due to composition and nonlinear activation function)

a perfect storm

• **Deeper** network architectures

• **GPU** based computing

• Massive **alchemistic** trial and error

AI Researchers Left Disappointed As NIPS Sells Out In Under 12 Minutes (2019)

data trumping models

2023 IEEE International Conference on Acoustics, Speech and Signal Processing 4 - 10 JUNE, RHODES ISLAND, GREECE Signal Processing in the Al era

grand challenge

Deep nets are easy to describe **locally**

Not clear how to describe them globally

$$\widehat{\mathbf{y}} = f_{\Theta}(\mathbf{x}) = \left(f_{\theta^{(L)}}^{(L)} \circ \cdots \circ f_{\theta^{(3)}}^{(3)} \circ f_{\theta^{(2)}}^{(2)} \circ f_{\theta^{(1)}}^{(1)} \right) (\mathbf{x})$$

grand challenge

Deep nets are easy to describe **locally Not clear** how to describe them **globally**

 \mathbf{X}

greek questions for the babylonians

- Why is deep learning so **effective**?
- Can we derive deep learning systems from **first principles**?
- When and why does deep learning **fail**?
- How can deep learning systems be improved and extended in a **principled** fashion?
- <u>Where is the **foundational framework** for theory</u>?

See also DeVore, Daubechies, Mallat, Bruna, Soatto, Arora, Poggio, [growing community] ...

I'm sorry, Dave. I'm afraid I can't do that.

many deep networks are splines

Randall Balestriero

Rudolf Riedi

Imtiaz Humayun

Sébastien Paris

Romain Cosentino

n Paris

deep nets and splines

A Spline Theory of Deep Learning

Randall Balestriero, baraniuk Proceedings of the 35th International Conference on Machine Learning, PMLR 80:374-383, 2018.

Nonlinear Approximation and (Deep) ReLU Networks

I. Daubechies, R. DeVore, S. Foucart, B. Hanin, G. Petrova

Piecewise convexity of artificial neural networks

Blaine Rister^{a,*}, Daniel L. Rubin^b

^a Stanford University, Department of Electrical Engineering, 1201 Welch Rd, Stanford, CA, 94305, USA

^b Stanford University, Department of Radiology (Biomedical Informatics Research), 1201 Welch Rd Stanford, CA, 94305,

Neural network approximation

Ronald DeVore Department of Mathematics, Texas A&M University, College Station, TX 77843, USA E-mail: rdevore@math.tamu.edu

Boris Hanin Department of Operations Research and Financial Engineering, Princeton University, NJ 08544, USA E-mail: bhanin@princeton.edu

Guergana Petrova Department of Mathematics, Texas A&M University, College Station, TX 77843, USA E-mail: gpetrova@math.tamu.edu

On the Number of Linear Regions of **Deep Neural Networks**

Guido Montúfar Max Planck Institute for Mathematics in the Sciences montufar@mis.mpg.de

Kyunghyun Cho

Université de Montréal

kyunghyun.cho@umontreal.ca

Razvan Pascanu Université de Montréal pascanur@iro.umontreal.ca

Yoshua Bengio Université de Montréal, CIFAR Fellow yoshua.bengio@umontreal.ca

A representer theorem for deep neural networks

Michael Unser

continuous piecewise affine (CPA) splines

CPA spline approximation Affine parameters (slope & offset) in each partition region Continuous X

- **Piecewise: Partition** the domain (data) into **regions**
 - polytopes in high dimensions

kinds of splines

- A spline function approximation consists of
 - a **partition** Ω of the independent variable (input space)
 - a (simple) local mapping on each region of the partition

Powerful splines

- free, unconstrained partition Ω (ex: "free-knot" splines)
- jointly optimize **both** the partition and local mappings (highly nonlinear, **computationally intractable**)

kinds of splines

- A spline function approximation consists of
 - a **partition** Ω of the independent variable (input space)
 - a (simple) local mapping on each region of the partition

• Easy splines

- fixed partition
 (ex: uniform grid, dyadic grid)
- need only optimize the local mappings

the crux

transformers

- Transformer networks have a more complicated structure than more neoclassical deep networks: self-attention mechanism
- At later layers, transformers can be closely approximated as CPA splines

Published as a conference paper at ICLR 2022

REVISITING OVER-SMOOTHING IN BERT FROM THE PERSPECTIVE OF GRAPH

Han Shi¹; Jiahui Gao²; Hang Xu³, Xiaodan Liang⁴, Zhenguo Li², Lingpeng Kong², Stephen M.S. Lee², James T. Kwok¹ ¹Hong Kong University of Science and Technology, ²The University of Hong Kong, ³Huawei Noah's Ark Lab, ⁴Sun Yat-sen University

Figure 3: Consine similarity between the attention matrices \hat{A} 's at layer *i* and its next higher layer.

	A PRIMAL-DUAL FRAMEWORK FOR TRANSFORMERS AND NEURAL NETWORKS	
	Tan M. Nguyen*	Tam Nguyen*
	Department of Mathematics	Department of ECE
	University of California, Los Angeles	Rice University
	tanmnguyen890ucla.edu	nguyenminhtam95200gmail.com
	Nhat Ho	Andrea L. Bertozzi
	Department of Statistics & Data Sciences	Department of Mathematics
	University of Texas at Austin	University of California, Los Angeles
	minhnhat@utexas.edu	bertozzi@math.ucla.edu
M THE		
	Richard G. Baraniuk	Stanley J. Osher
	Department of ECE	Department of Mathematics
	Rice University	University of California, Los Angeles
	richb@rice.edu	sjo@math.ucla.edu

deep nets* are splines

A multi-layer deep net is a continuous piecewise affine (CPA) spline operator

"Mad Max: Affine Spline Insights into Deep Learning," Proceedings of the IEEE, 2021

input space partition

"power diagram" (convex polytopes)

ReLU deep net units & layers

- A deep net layer implements a CPA spline operator
- Ex: Layer 1

unit spline function

- Each deep net unit/neuron implements a CPA spline function
- Ex: At layer 1, the k-th output of a ReLU net is given by

layer spline operator

• The units in a **deep net layer** implement a CPA **spline operator**

layer spline partition

- The spline partition of the input space is formed by intersecting a collection of half-spaces
- Ex: At layer 1, the k-th unit splits in layer input space in two

$$z_{k}^{(1)} = \operatorname{ReLU}\left(\mathbf{w}_{k}^{(1)} \cdot \mathbf{x} + b_{k}^{(1)}\right) > 0 = 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

layer spline partition

- The spline partition of the input space is formed by intersecting a collection of half-spaces
- Ex: At layer 1, the k-th unit splits in layer input space in two

$$z_{k}^{(1)} = \operatorname{ReLU}\left(\mathbf{w}_{k}^{(1)} \cdot \mathbf{x} + b_{k}^{(1)}\right) > 0 = 0$$

$$final equation of a$$

$$hyperplane in the layer's input space$$

$$hyperplane arrangement$$

 $\mathbf{\tilde{}}$

layer spline mapping

- Deep net layer spline operator
 - different fixed **affine transform** on each partition region $Q(\mathbf{x})$
 - continuous across partition regions
- Closed-form formulas are available for $\mathbf{A}_{Q(\mathbf{x})}^{(1)}, \mathbf{B}_{Q(\mathbf{x})}^{(1)}$

these are not your parents' splines!

• Even a **single layer** with *K* units/neurons and piecewise linear activation function with *R* pieces

On the Number of Linear Regions of Deep Neural Networks

Guido Montúfar Max Planck Institute for Mathematics in the Sciences montufar@mis.mpg.de

Razvan Pascanu Université de Montréal pascanur@iro.umontreal.ca

Kyunghyun Cho Université de Montréal kyunghyun.cho@umontreal.ca Yoshua Bengio Université de Montréal, CIFAR Fellow yoshua.bengio@umontreal.ca

induces a spline partition with **exponentially many** partition regions R

• Absurd! 1M data points 100M parameters 1 zillion partition regions

SplineCAM

- Provably exact algorithm for computing a deep net's spline partition geometry in a 2D slice
 - exploit efficient graph-traversal method

 Ex: VGG16 with ~138M parameters trained on tiny-Imagenet ~7 minutes for ~1K regions

SplineCAM

 Visualize the exact decision boundary of an 8-layer classification net along a 2D slice of the input space

(8 min for 80k regions)

implicit neural representation (INR)

Powerful deep-network based models for 2D images

implicit neural representation (INR)

• Powerful deep-network based models for **3D objects**

SplineCAM

 Characterize the exact object boundaries in a deep net based implicit neural representation (INR) of a 3D object

these are not your parents' splines

Not necessarily absurd

1. Most spline partition regions are **empty**

2. Most regions are **far from the action**

these are not your parents' splines

Not necessarily absurd

- 1. Most spline partition regions are **empty**
- 2. Most regions are **far from the action**
- 3. Regions have a rich **multiscale structure**

multiscale partition subdivision

• Subdivision

Each unit (neuron) creates a hyperplane that cuts its layer input space into two half-spaces

Folding

With respect to the deep net's input space, the hyperplanes are **folded** by the previous layers to maintain **continuity** of the CPA spline mapping

2D slice of input space

"The Geometry of Deep Networks: Power Diagram Subdivision," NeurIPS, 2019

multiscale partition subdivision

2D slice of input space

• Subdivision

Each unit (neuron) creates a hyperplane that cuts its layer input space into two half-spaces

Folding

With respect to the deep net's input space, the hyperplanes are **folded** by the previous layers to maintain **continuity** of the CPA spline mapping

 Many interesting multiresolution analysis questions (think wavelets++)

multiscale partition subdivision

- Many interesting multiresolution analysis questions (think wavelets++)
- What are the analogues of
 - sparsity?
 - tree structures?
 - fractals?
 - long-range dependence?

applications: deep network learning

learning dynamics

- **Quantify** partition and decision boundary **during learning**
- Monitor **more than just end-to-end** train/test accuracy

compare training/design choices

 Quantify DNs based on the geometric properties of the partition, ex: via partition density around train/test points

more learning applications

• Explaining why **batch normalization** improves learning

"Batch Normalization Explained," arXiv, 2022

 Proof that residual networks have a better behaved loss surface than convnets

"Singular Value Perturbation and Deep Network Optimization," *Constructive Approximation*, 2022

[Hao Li et al., "Visualizing the loss landscape of neural nets," NeurIPS, 2018]

more learning applications

• Proof that **residual networks** have a better behaved loss surface

loss surface is **piecewise quadratic/cross-entropic**

than convnets

"Singular Value Perturbation and Deep Network Optimization," *Constructive Approximation*, 2022

more learning applications

• Proof that **residual networks** have a better behaved loss surface

than convnets

"Singular Value Perturbation and Deep Network Optimization," *Constructive Approximation*, 2022

application: uniform sampling from generative networks

deep generative models

 Deep generative network (DGN) maps a low-dimensional latent space to an image manifold in high-dimensional data space (ex: GAN)

deep generative models

- Exploit fact that **DGN is a CPA spline**
 - DGN maps latent input space to a CPA manifold in higher-dimensional space

Each latent space partition region is warped and placed into the output space by an affine transform

bias in machine learning

The New York Times

Facial Recognition Is Accurate, if You're a White Guy Misinformation Is About to Get So Much Worse

Atlantic

A conversation with the former Google CEO Eric Schmidt

Al tradeoffs: Balancing powerful models and potential biases

We Teach A.I. Systems Everything, Including Our Biases

biased sampling from DGNs

- Training data is often **non-uniformly sampled** from the data manifold
 - results in **biased** DGN samples

MagNET (Maximum entropy Generative NETwork)

- Exploit the analytical characterization of data distribution
 - adapt sampling from DGN according to local manifold properties
 - account for the change of volume induced by each CPA mapping
 - reweight the latent sampling to obtain uniformly distributed samples on the generated manifold

3D output data space

"MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining," ICLR, 2022

MaGNET

- Training data is often **non-uniformly sampled** from the data manifold
 - results in **biased** DGN samples
- MaGNET does *not* require re-training nor labels

practical example

 Without labels or retraining, MaNET's uniform sampling reduces gender bias of FFHQ-StyleGAN2 by 41%

deep networks R computational harmonic analysis

implicit neural representation (INR)

• Powerful deep-network based models for **2D images**

• Standard activation nonlinearities: ReLU, bumps, sinusoids

• 1D (complex) wavelet activation nonlinearity

$$\underline{\sigma}\left(W_3 \,\underline{\sigma}(W_2 \,\underline{\sigma}(W_1 u + b_1) + b_2) + b_3\right) \qquad u = \begin{bmatrix} x \\ y \end{bmatrix}$$

Input: Spatial Coordinates Output: 2D Pixel Intensity

• 1D (complex) wavelet activation nonlinearity

$$\sigma\left(W_3 \,\sigma(W_2 \,\sigma(W_1 u + b_1) + b_2) + b_3\right)$$

• 1D (complex) wavelet activation nonlinearity

$$\sigma\left(W_3 \,\sigma(W_2 \,\sigma(W_1 u + b_1) + b_2) + b_3\right)$$

• 2D (complex) wavelet activation nonlinearity

$$\sigma\left(W_3 \sigma(W_2 \sigma(W_1 u + b_1) + b_2) + b_3\right)$$

• 2D (complex) wavelet activation nonlinearity

1996

Field,

৵

Olshausen

• **1D** (complex) **wavelet activation** nonlinearity

$$\sigma (W_3 \sigma (W_2 \sigma (W_1 u + b_1) + b_2) + b_3)$$

Input image

Layer 1 output

CT image recovery

wrap up

tremendous alchemistical progress

 $\widehat{\mathbf{y}}$

 \mathbf{X}

Pandemic of 1665

 $\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$

Here's the **punch line**

 (CPA) Splines provide a firm foundation for a theory of deep learning

summary

- Driving concepts of **deep learning** are here to stay:
 - Overparameterization, nonconvex optimization, big data
 - The field needs foundational theory to guide experimentation
- Modern deep nets are a (composition of)
 CPA splines with rich structure
 - power diagram
 - multiscale subdivision
- Spline viewpoint enables
 - analysis and improvement of learning
 - improved generative modeling
 - so much more!

"Singular Value Perturbation and Deep Network Optimization," *Constructive Approximation*, 2022 "Batch Normalization Explained," arXiv, 2022 "A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning," 2022 "SplineCAM," imtiazhumayun.github.io/splinecam, 2022 "Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values," *CVPR*, 2022 "DeepHull: Fast Convex Hull Approximation in High Dimensions," *ICASSP*, 2022 "MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining," *ICLR*, 2022 "Mad Max: Affine Spline Insights into Deep Learning," *Proceedings of the IEEE*, 2021 "Analytical Probability Distributions and Exact EM for Deep Generative Networks," *NeurIPS*, 2020 "From Hard to Soft: Understanding Deep Network Nonlinearities...," *ICLR*, 2019 "A Max-Affine Spline Perspective of RNNs," *ICLR*, 2019 "The Geometry of Deep Networks: Power Diagram Subdivision," *NeurIPS*, 2019 "Spline Filters for End-to-End Deep Learning," *ICML*, 2018 "A Spline Theory of Deep Networks," *ICML*, 2018