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Future Wireless Networks
Ubiquitous Communication Among People and Devices

Next-Gen Cellular/WiFi
Smart Spaces/Cities
Autonomous Vehicles
“Enhanced” Reality
Body-Area Networks
Massive Sensing
All this and more …



And mmW/THz
10s of GHz of Spectrum

The Licensed Airwaves are “Full”
Also have Wifi

Overcoming a Spectrum Deficit in a 5G World, 
Engineering Design, April 3, 2021



On the Horizon, the Internet of Things

 Different requirements than smartphones
 Low rates, latency, energy consumption
 Also security, privacy, and resilience

Source: Grand View Research
Report ID: GVR-2-68038-142-9



Promise of 5G

Source: Nokia

Challenges: high data rates, low energy, low latency



Especially in wireless standards, as it drive the next G



Rethinking cellular system design
 Rethinking backbone network design
Utilizing more spectrum (mmw/THz)
 Very low power radios
Massive MIMO
New PHY and MAC techniques
Multihop routing
 Edge computing and caching
 Cloud and fog optimization
 Security, privacy and resilience
Machine learning

Enabling Technologies for NextG networks
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Can’t ML enable everything?



ML Today is a Bandwagon
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Should we jump on? Or run screaming?

• ML will play an important role in NextG design/operation
• ML can “beat” theory in PHY-layer design (equalizers, encoding/decoding)
• ML may provide approximate solutions to intractable network resource 

allocation problems
• ML may provide breakthroughs in security, privacy and resilience
• ML may provide the key to breakthroughs in cross-layer design



New PHY and MAC Techniques
 New Waveforms

 More bandwidth/energy efficient/robust to changing channels
 More flexible and efficient subcarrier allocation

 New Coding Techniques
 New channels and new waveforms
 New requirements (low latency and low complexity)

 New Detection Techniques
 Lower complexity, robust to impairments, blind

 New Multiple Antenna Techniques
 New space-time modulation, coding, and detection methods
 Massive MIMO

 New Access Techniques
 Efficient (non-orthogonal) access

 Machine learning in PHY/MAC design and operation

1971
1980s
2000s
2010s



Waveform Disruption
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- High-speed data
- Voice
- IoT
- AR/VR
- Automation
- AIML

Voice

Voice + Data

High speed
data + Voice

TDMA
CDMA

OFDM

2G 3G 4/5G NextG

NewMod



Data can be modulated onto different 
domains: time, frequency, doppler, delay

CDMA

TDMA OFDM

NewMod



One Strong Candidate: Orthogonal Time-
Frequency-Space Modulation (OTFS)*

Delay-Doppler
Domain

Data adaptively modulated in delay-Doppler domain

Zak
Transform

Time-Frequency
Domain

Zak Domain
All symbols spread 

over entire time-
frequency channel; 
obtain full diversity

*Orthogonal Time Frequency Space Modulation, Hadani et. al., WCNC’17 & Arxiv



OFDM vs OTFS Performance

Short packets, 1x1, 16/64 QAM, 30 km/h Long packets, 2x2, 4/16/64 QAM, 500 km/h

>3.5 dB >2 dB
>5 dB

→∞ dB



ML-Based Receiver Design

• PHY transmitter and receiver design typically based on a 
mathematical channel model
• Accurate channel models may not be known
• Models may not enable computationally efficient PHY algorithms 

(decoding, detection, message recovery)

• How does ML-Based RX  design solve this?
• No need for channel model or its parameters
• Learn the RX design directly from data
• Solution is robust to estimation error
• Requires large amount of training (many xis)
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ViterbiNet: 
Standard Viterbi with ML to learn p(y|x)

Viterbi
p(y|x)

Much faster training and lower 
complexity than end-to-end 

ML-based receiver design
Joint work with Eldar, Farsad, Shlezinger



Neural Nets as a Communication System
Classic Communication System

ML as a Communication System
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Massive MIMO

Massive MIMO removes attenuation, fading, 
interference

 Bottlenecks: channel estimation, complexity
 Ideal beamforming disappears with shadowing
 Need multihop/mesh networks

Hundreds
of antennas

Dozens of devices



Non-coherent massive MIMO
Propose simple energy-based modulation
No capacity loss for large arrays:

 Holds for single/multiple users (1 TX antenna, n RX antennas)

Constellation optimization: unequal spacing
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Blind MIMO Decoding via Vertex Hopping
Given samples in the form:

 .
 is drawn from an MPAM or BPSK 

constellation (source must be hypercubic).
Rich scattering, small MIMO ( ).

In a block-fading environment, estimate 𝑨 and recover 𝒙 given only 𝑘 samples of 𝒚In a block-fading environment, estimate 𝑨 and recover 𝒙 given only 𝑘 samples of 𝒚Blind MIMO Decoding

Joint work with T. Dean



Fitting a Parallelepiped --- Algorithms

 is a non-convex optimization problem
 Constrained gradient descent works but is slow.
 The Vertex Hopping algorithm uses concepts from solving 

mixed-integer linear programming to solve .

|maximize

subject to
𝑼

Gaussian noise will not 
greatly distort this shapey

U
x



Runtime Performance
Gradient DescentVertex Hopping*

Time (s)Pr[success]Time (s)Pr[success]kn 3.01  100.991.83  101.082 6.33  100.996.46  101.0133 0.130.991.74  101.0184 0.300.972.96  101.0185 0.590.938.52  101.0226 3.50.804.99  100.99308

-05.36  100.994510
-03.70  100.996012

†

*†Implemented in Rust
MATLAB’s fmincon



AWGN and Fading Performance



Rethinking Cellular System Design

 Cellular systems reuse channels/timeslots in different cells
 Traditional design assumes system is “interference-limited” 
 Capacity unknown; upper bound based on BC/MAC with pooled antennas

 No longer the case with recent technology advances:
 MIMO, multiuser detection, cooperating BSs (CoMP) and relays
 Raises interesting questions such as “what is a cell?”

 Dynamic self-organization (SoN) needed for deployment and optimization

Small
Cell

Relay

DAS

CoMP
How should cellular
systems be designed?

Will gains be big or 
incremental; in capacity,
coverage or energy?



Small cells are the solution to 
increasing cellular system capacity
In theory, provide exponential capacity gain

 Future cellular networks 
will be hierarchical

 Large cells for coverage

 Small cells for capacity and 
power efficiency

 Small cells require self-
optimization in the cloud

SoN
Server

Macrocell BS

Small cell BS

IP Network



HetNet Optimization Challenge
Algorithmic complexity

 Frequency allocation alone is NP hard
 Also have MIMO, power control, CST, hierarchical 

networks: NP-really-hard
 Advanced optimization tools needed, including a 

combination of centralized (cloud) distributed, and locally 
centralized (fog) control

 ML can also play a role

Macrocell BS

Small cell BS

Cloud Optimization

Fog 
Optimization

Next challenge: 
optimizing caching 
and edge computing



Fog-Optimization vs. Centralized
 Use clustering technique to cluster BSs, then optimize 

power allocation to maximize uplink sum rate
 Consider multiple clustering techniques (not much difference)
 Nonconvex approximation for optimization

10x loss

Single-User Decoding per BS Joint Decoding in Virtual Cell

55% loss

Joint work with M. Yemini



Cloud-Enabled Wireless Networks (includes “fog”)

Mmw networks

Vehicle networks
Cellular networks

Sensor networks



NextG Network Convergence

Cloud

Wireless

Backbone

What design principles should drive this convergence? 



This design is critical for NextG applications



Malicious 
Agents

x x
x

Jammers

Eavesdroppers

Link Failures

Grid Failure

Collaboration over Wireless Networks: 
Security, Privacy, and Resilience



Centralized Detection with Flaky Links
Sensors have intermittent 

connectivity to fusion center (FC)

Sensors collaborate within 
predefined sensor clusters 
 Fuse their noisy sensor data to 

reach a common local estimate
 Common estimate sent to FC

FC fuses the received estimates 
for event detection

Determine optimal decision rule 
with tractable complexity

Excellent detection performance

Joint work with Gil and Yemini



Federated Learning with Flaky Links

 Neighbors collaborate to send data 
to central parameter server

 Each client computes consensus 
estimate from neighbors
 Weighted by connectivity

 Algorithm exhibits improved 
convergence and accuracy

 Can also introduce privacy 
constraints 

Joint work with Gunduz, Mohammed, Ozlatura, Saha, Yemini



Trust and Resilience in Distributed Consensus

 Consensus algorithms assume trusted agents

 We ask: how to achieve consensus when there 
are malicious agents

 Propose a consensus algorithm with untrusted 
agents, with almost sure convergence
 Even when malicious agents constitute more 

than half of the network connectivity

 The true consensus value bounded with  p→1. 

 Correct classification of malicious and 
legitimate agents can be attained in finite time

 Expected convergence rate decays 
exponentially with trust

Joint work with Gil, Nedic, and Yemini



Challenges to NextG technology disruption

Complexity of current networks
Lack of significant research investment for a decade
Standards process can stifle innovation
NextG hardware and software proprietary and closed
 Research silos across wireless, backbone networks, 

cloud, electronics, and applications



New era for US technology innovation



Killer App for 6G?

Connecting the next billion



Cellular architectures for long-range coverage
Satellite systems
Low-cost hardware and devices
We have the technology today
A question of cost, commitment, policy, and politics



Summary
 The next wave in wireless technology is upon us

 Will enable new applications that will change people’s lives

 Future wireless networks must support high rates, 
extreme energy efficiency, and low latency
 With robust security, privacy, and resilience

 Many challenges to creating the technical innovations 
and disruptions needed to achieve this vision

 Connecting the next billion is the killer app for 6G


