Al-generated voices Applications and implications Spyros Raptis Innoetics / Samsung Electronics Greece

Outlook

Beyond supervision

The shifting paradigm in voice generation

Problem areas

Selected areas in voice generation

Applications

How voice generation is already affecting the creative industries and our everyday lives

Ethics reshaping

Sings of a missing framework, emergence of novel questions and regulation being born

Beyond supervision

- Unsupervised learning
- Self-supervised representations
- Audio as language
- Multi-modal embeddings
- Huge datasets for a truly global coverage of spoken language

Beyond supervision

- Unsupervised learning
- Self-supervised representations
- Audio as language
- Multi-modal embeddings
- Huge datasets with universal coverage

Problem areas

- Word-level style control
- Phoneme-level prosody control
- Speaker generation

Style control

• "Style":

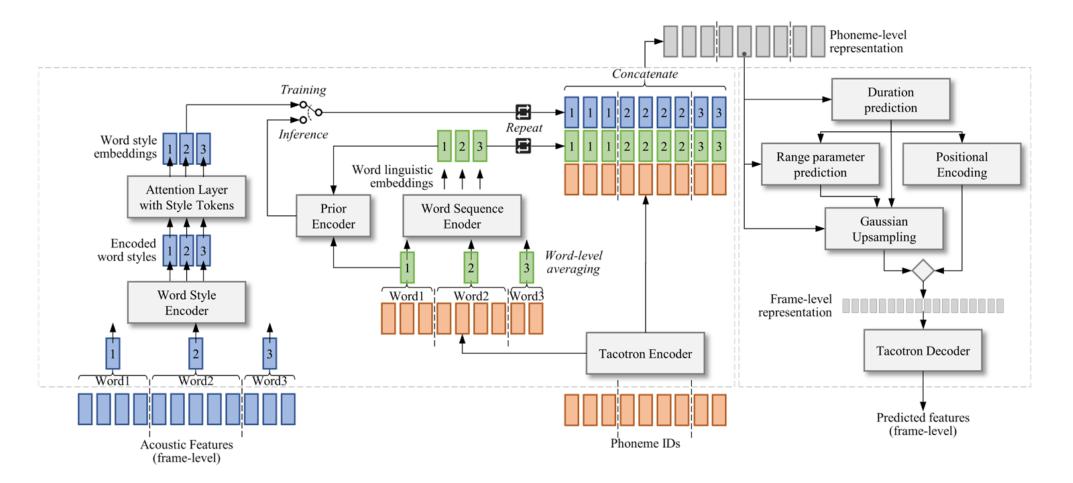
different qualities of the voice, depending on the use case

- **Style control**: control mechanisms baked into a model VS retro-fitted ex post
- **Granularity**: different levels relevant to different applications

• Style palette:

let the model discover the styles inherent in the data VS imposing an externally defined taxonomy

Word-level style control



Word-Level Style Control for Expressive, Non-attentive Speech Synthesis

K. Klapsas, N. Ellinas, J. S. Sung, H. Park, S. Raptis SPECOM 2021: International Conference on Speech and Computer

word-level style control Style controllability

Style controllability is achieved by:

• manipulating the weights of the word-level style tokens

Unified and robust **control of token weights**:

- estimate the distribution of each token's weights in the training corpus;
- z-normalize it;
- apply changes to the token weights that are multiples of their standard deviation.

Level of control:

• Single word, multiple words, or the entire utterance

word-level style control **Experiments**

Training dataset: Subset of the Blizzard Challenge 2013 audiobook dataset (single speaker, rich prosody)

Style token dims: 15 tokens x 128 each

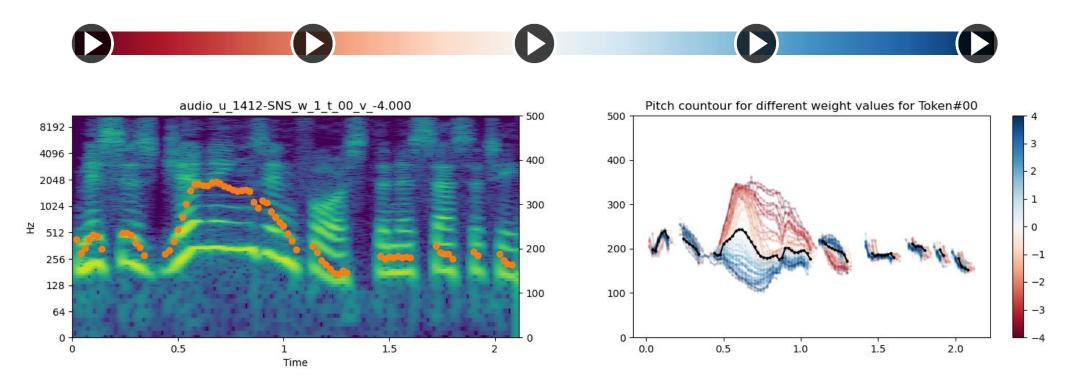
Vocoder: LPCNet

Observations:

- The model tended to generate **richer pitch patterns** than the plain NAT model
- Some of the tokens had simple intuitive **interpretations**:
 - some tokens were directly related to the pitch and some to the speaking rate;
 - For those tokens, decreasing their weight had the perceptually opposite effect of increasing it

WORD-LEVEL STYLE CONTROL Direct style manipulation at word-level

Word-level Token 0 \rightarrow Affects pitch

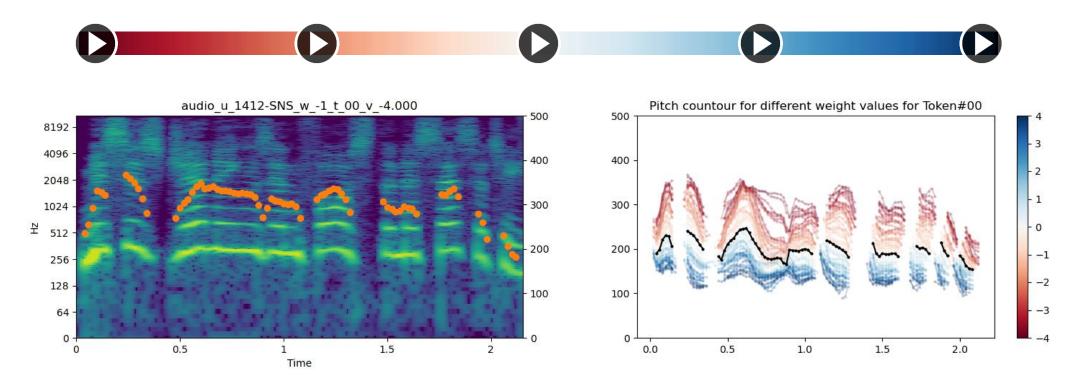


1412-SNS Mrs. <u>Jennings</u> enforced the necessity.

innoetics **SAMSUNG**

WORD-LEVEL STYLE CONTROL Direct style manipulation at utterance-level

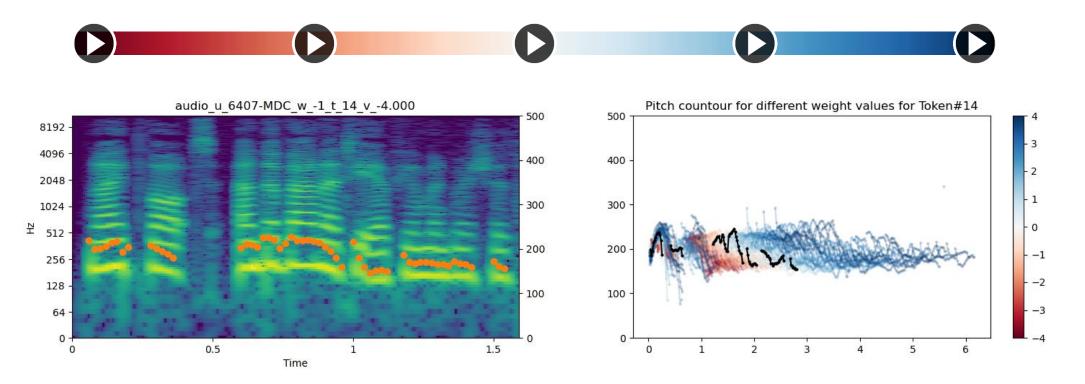
Utterance-level Token #0 → Affects pitch



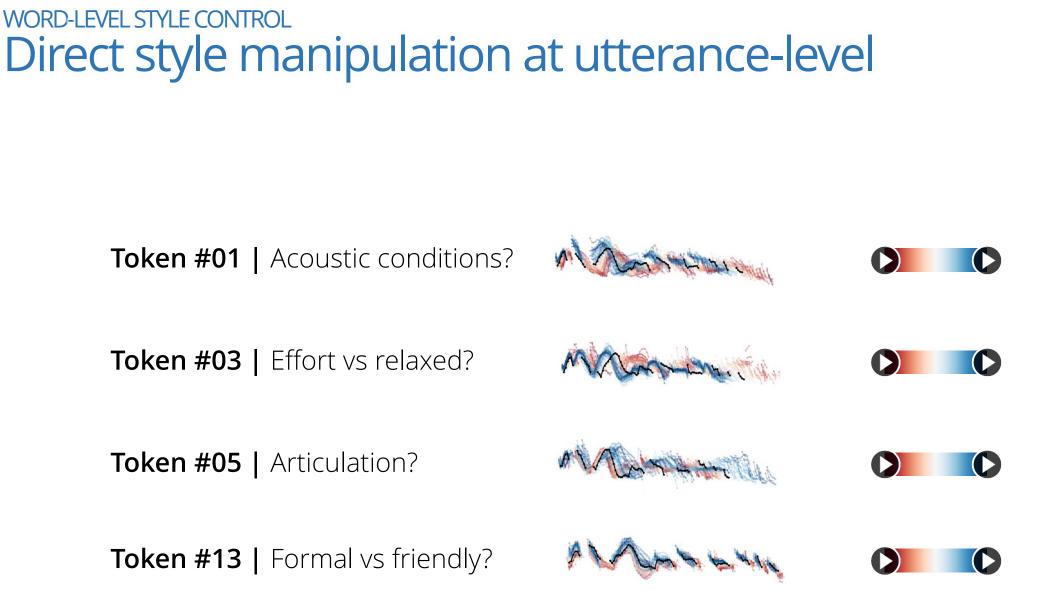
1412-SNS Mrs. Jennings enforced the necessity.

WORD-LEVEL STYLE CONTROL Direct style manipulation at utterance-level

Utterance-level Token #14 → Affects speaking rate



6407-MDC Night Thoughts, and the Vanity of Human Wishes.



innoetics **SAMSUNG**

Phoneme-level prosody control

- Unsupervised latent representations can capture speech variability, but:
 - the different qualities of speech are entangled and not amenable to our direct control
- However, in some use cases:
 - we do need to **control**;
 - at a **fine-grained** level;
 - with **discrete labels**.
- Approach:
 - condition at training time on features we care to control at inference time;
 - data augmentation;
 - within-speaker F0 normalization and speaker-independent F0 clustering;
 - balanced clustering for duration.

PHONEME-LEVEL PROSODY CONTROL Dataset

• Multi-speaker dataset:

- internal dataset (3 female + 2 male voices) \rightarrow ~160h
- the 2013 Blizzard Challenge voice (Cathy) \rightarrow ~60h
- Forced-alignment to calculate phoneme boundaries
- Pitch- and duration-**augmentations** \rightarrow improved robustness and value ranges
 - Pitch shifting (+- 3 semitones)
 - Time stretching (+- 30% of speaking rate)
- Extract phoneme-level values for pitch (average) and duration

Controllable speech synthesis by learning discrete phoneme-level prosodic representations N. Ellinas, M. Christidou, A. Vioni, J. S. Sung, A. Chalamandaris, P. Tsiakoulis, P. Mastorocostas *Speech Communication, Vol. 146, pp. 22-31 (2023)*

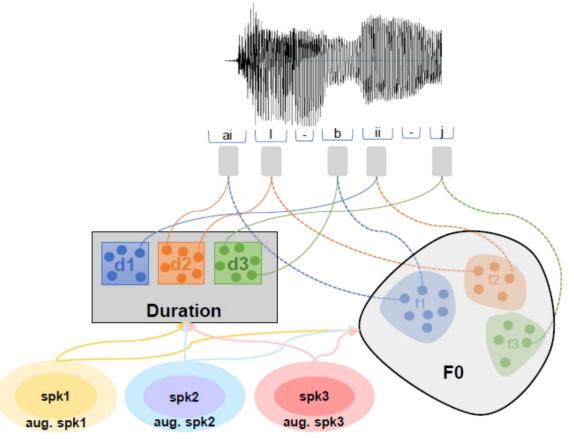
PHONEME-LEVEL PROSODY CONTROL Pitch- and duration clustering

- Pitch clustering per speaker:
 - Average pitch values at phoneme-level
 - z-normalize with the speaker's mean and std
 - K-means clustering

Helps deal with pitch range variations across genders/speakers, and facilitates the adaptation to new speakers

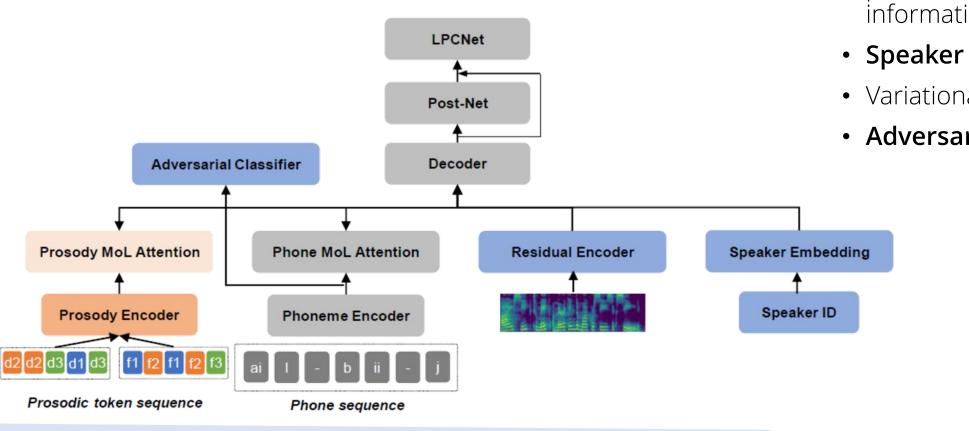
- Duration clustering:
 - Calculate the duration of each phoneme
 - Balanced clustering per phoneme class

No duration normalization was necessary in this case.



PHONEME-LEVEL PROSODY CONTROL Model training

Autoregressive attention-based model



- Separate **MoL attentions** for phoneme and prosodic information
- Speaker embedding size: 64
- Variational residual encoder
- Adversarial speaker classifier

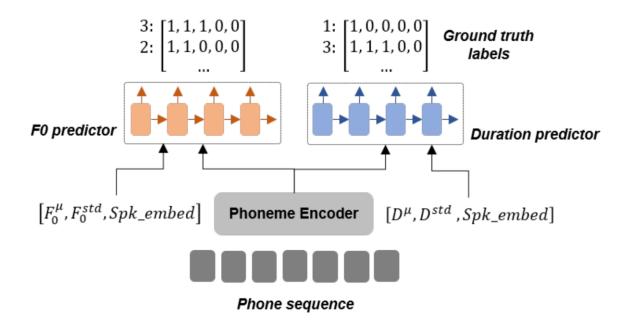
Controllable speech synthesis by learning discrete phoneme-level prosodic representations

N. Ellinas, M. Christidou, A. Vioni, J. S. Sung, A. Chalamandaris, P. Tsiakoulis, P. Mastorocostas *Speech Communication, Vol. 146, pp. 22-31 (2023)*

PHONEME-LEVEL PROSODY CONTROL Inference

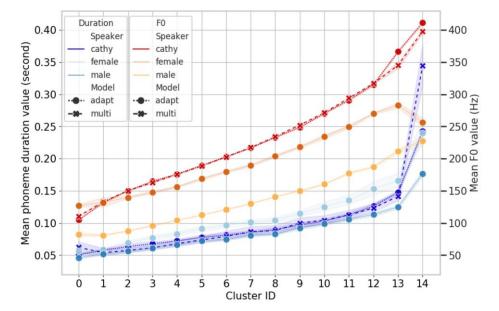
Prosody predictor

- trained separately ex post (phoneme encoder frozen)
- leverages the fact that the prosodic representations are:
 - discrete, and
 - ordinal



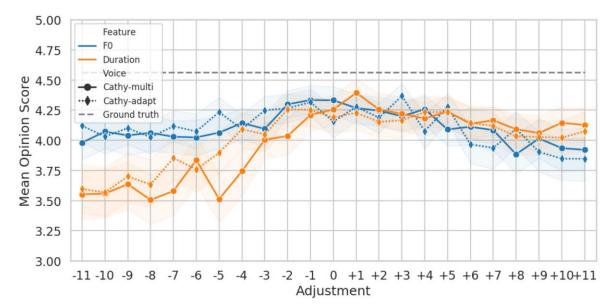
PHONEME-LEVEL PROSODY CONTROL CONTROL

Objective measures



- **x-axis**: prosodic category specified in input (for pitch or duration)
- **y-axis**: actual mean value of pitch (right) and duration (left) measured in the respective synthetic utterances generated

Subjective evaluation



- **x-axis**: modification offset for pitch (blue) or duration (orange)
- y-axis: MOS score

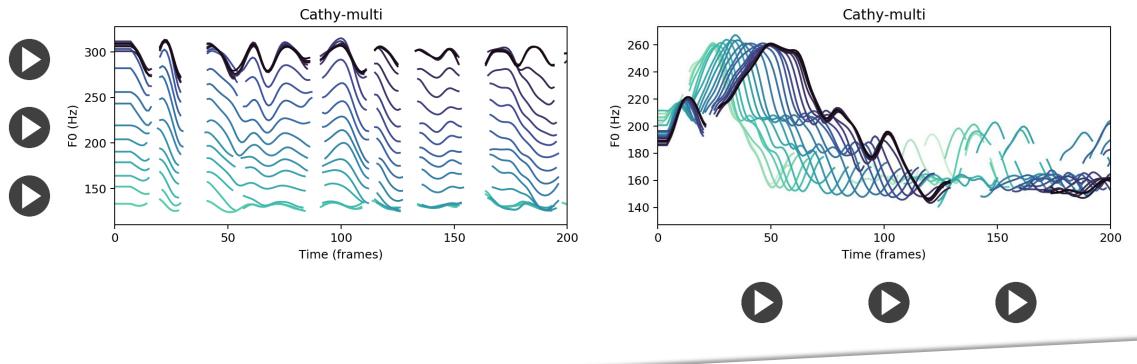
PHONEME-LEVEL PROSODY CONTROL Modifications: utterance-level

F0 modification based on offset from ground-truth labels

He could see every object in his cottage and his gold was not there.

Duration modification based on offset from ground-truth labels

With lowered head he asked: Whered you go to?

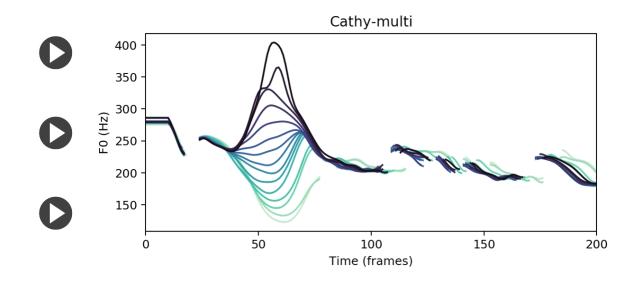


innoetics **SAMSUNG**

PHONEME-LEVEL PROSODY CONTROL Modifications: phoneme-level

F0 modification based on offset from ground-truth labels

To prolong (p r @ I Q N) and intensify the feeling he added...



PHONEME-LEVEL PROSODY CONTROL Adaptation to unseen speakers

Objectives:

- Adaptation to new, unseen target speaker with limited amount of data
- Maintain high quality
- Maintain the ability for fine-grained control

Process:

- Apply augmentation and z-normalization to the new speaker's data
- Fine-tune the model by replacing one of the existing speakers with the target speaker
- Even 5 minutes of target speaker's audio was enough

"His genius and ardour had seemed to foresee and to command his prosperous path."

Speaker Generation

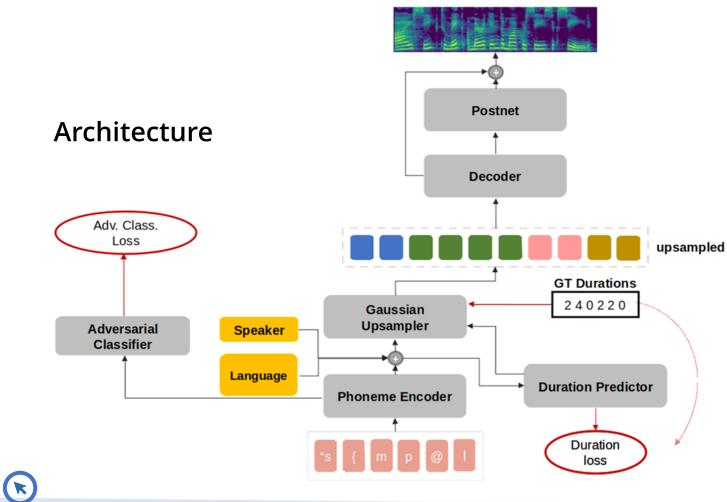
- Multi-speaker TtS systems can closely imitate the voice color and style of the speakers in their training data
- The speaker identity representations that they learn correspond to real people.
- Extrapolate: generate **novel speakers** from multi-speaker / multi-lingual data
- Multiple approaches:

• ...

- TacoSpawn: recurrent attention-based text-to-speech model that learns a distribution over a speaker embedding space
- Transfer learning: d-vectors from speaker verification task as speaker representations for TTS

innoetics SAMSUNG

SPEAKER GENERATION Model and training data



Training data

name	open	lng	hours	speakers		
				male	female	all
en96		en	342	56	40	96
LibriTTS [8]	\checkmark	en	163	457	421	878
VCTK [9]	\checkmark	en	25	46	62	108
ko87		ko	553	44	43	87
es8		es	96	4	4	8
de9		de	117	4	5	9
fr10		fr	95	4	6	10

Generating Multilingual Gender-Ambiguous Text-to-Speech Voices

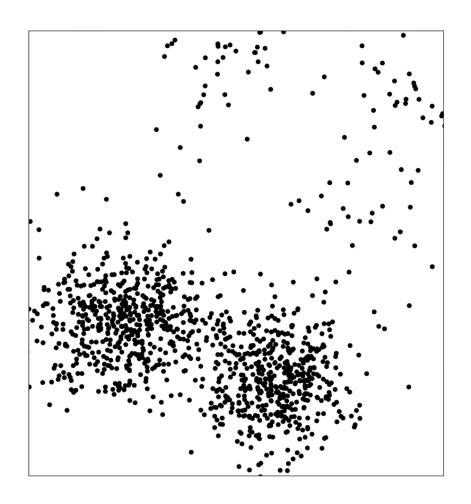
K. Markopoulos, G. Maniati, G. Vamvoukakis, N. Ellinas, G. Vardaxoglou, P. Kakoulidis,

J. Oh, G. Jho, I. Hwang, A. Chalamandaris, P. Tsiakoulis, S. Raptis

Accepted to: Interspeech 2023

SPEAKER GENERATION Embedding space

- Speaker embeddings: the "essence" of a speaker's voice (color, prosody, ...)
- "Similar" voices represented by nearby vectors
- 256-dim space
- PCA to reduce to 2D for display

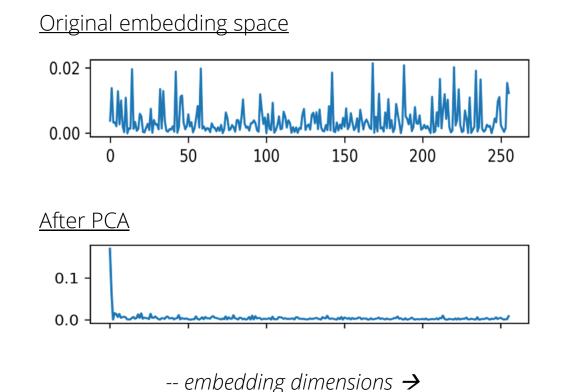


SPEAKER GENERATION Gender in the embedding space

- the first two PCA dimensions highly correlated to gender
- male and female speakers are almost linearly separable
- gender is one of the most important factors that explain the variance in the learned speaker embedding space
- additional sources of variation, e.g. acoustic conditions, recoding equipment, ...

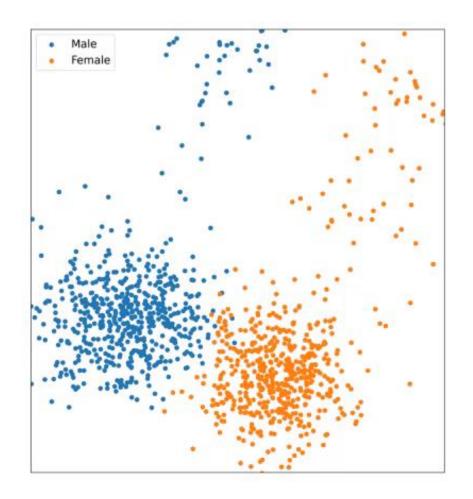
SPEAKER GENERATION Gender in the embedding space

- How much part of the gender information is captured in the first 2 dimensions?
- Correlation ratio:
 η = the weighted variance of the mean of each category (male/female) over the variance of all samples
- Gender information spread across dimensions in the original space, but concentrated mainly in the first 2 in the PCA space



SPEAKER GENERATION Generating novel speakers

- All sources of variation (aside from linguistic content) entangled in the embedding space
- Point in the embedding space → plausible novel speakers "similar" to their neighbors
- First two PCA dimensions capture most speaker variability, so it makes sense to use these to guide the sampling
- How do we recover the rest of the dimensions?
 - Assume 0 for all the rest in the PCA space (i.e. assume their mean value); or
 - Find the closest male and female speaker and perform weighted interpolation



SPEAKER GENERATION Browsing the embedding space

66 This 48th ICASSP is the first post-pandemic edition, celebrating the return to an in-person experience and the 75th anniversary of SPS. We are looking forward to welcome back the whole signal processing community in a single venue, after three very challenging years. ICASSP's main theme this year is "Signal Processing in the AI era," promoting the creative synergy between signal processing and machine learning.

lacksquare

"

SPEAKER GENERATION Gender perception in generated voices

- Gender information is very prominent in the first 2 PCA dimensions, so we can experiment on:
 - How amenable is voice gender to our control?
 - How is voice gender perceived across different demographics?
- Process:
 - estimate the density of male and female speakers;
 - find the **boundary area**: where male and female densities are relatively high and comparable
 - **sample** from the boundary and generate the respective speaker embeddings;
 - run **objective metrics** to measure gender ambiguity, speaker diversity, voice consistency
 - perform listening tests on samples synthesized by the corresponding generated speaker embeddings with subjects from different demographics

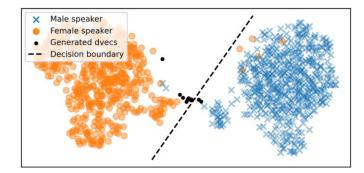


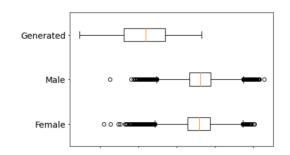
SPEAKER GENERATION Gender perception in generated voices

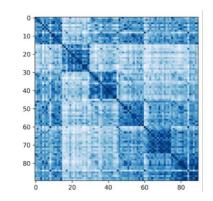
Objective metrics

- Gender ambiguity. Generated utterances on the d-vectors space (UMAP on 2D).
- **Speaker diversity**. Diversity in the original and generated voices (distances in the d-vectors space)
- Voice consistency.

Distance matrix of sentences synthesized by different generated speakers in different languages







innoetics SAMSUNG

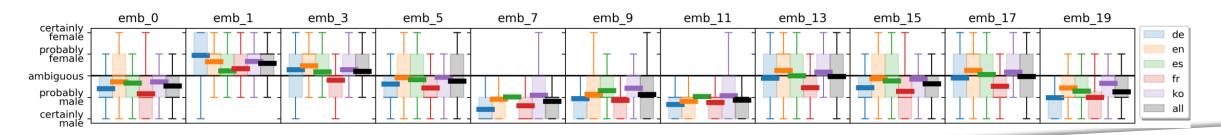
SPEAKER GENERATION Gender perception in generated voices

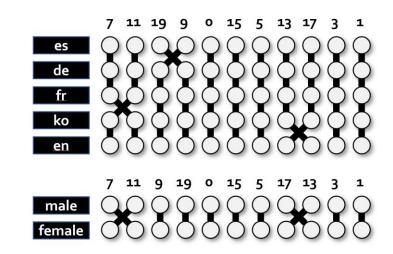
Subjective listening tests

- MOS scores listening tests: naturalness and gender perception
 - English , Korean, Spanish, French, German
- Subjects:
 - 114 subjects, 15432 ratings for gender perception
 - 102 subjects, 14136 ratings for naturalness.
 - 58.4% males, 31.7% females and 9.9% of undisclosed gender.
- Main conclusions:

The ordering of systems' perceived gender (more/less male/female) is largely consistent across both dimensions.

So, gender perception seems to be shared among listeners of different gender and different native language





innoetics **SAMSUNG**

Applications

Applications

An increasing supply of AI-backed voice generation technologies and platforms with a significant impact on...

...the creative industries:

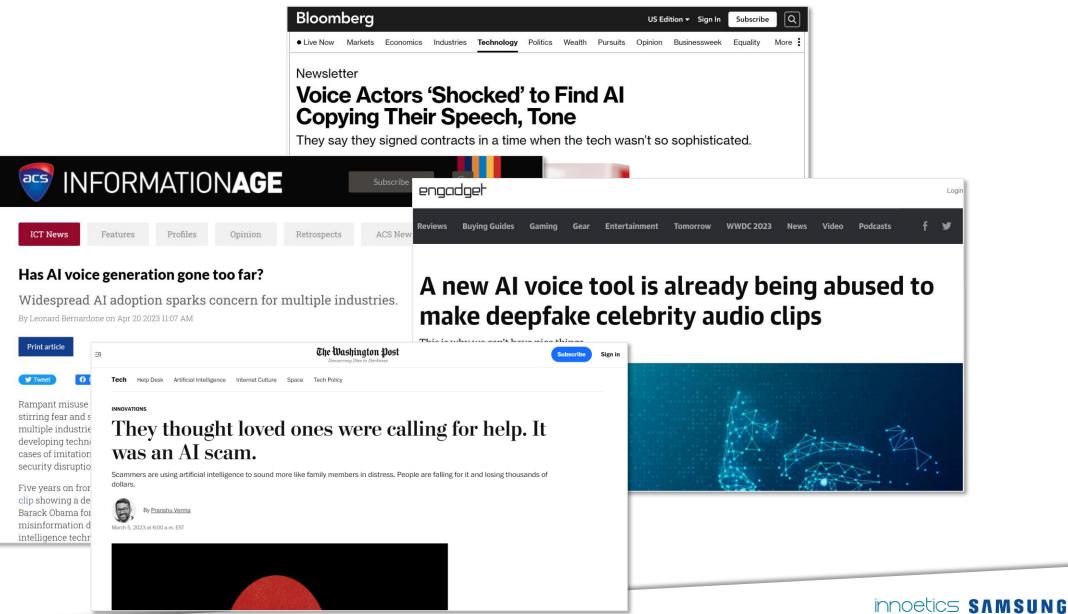
- Audiobooks
- Post-production for cinema
- Post-production for user generated content
- Voice cloning and personalized voices
- Gaming
- Singing
- ...

...our **personal lives**:

- Accessibility
- Education and language learning
- Personal communication

Ethics reshape

ETHICS RESHAPE Sings of a missing framework



ETHICS RESHAPE Regulation forming

- Al Act: draft EU Directive on AI applying to the development, deployment, and use of AI in the EU or when it will affect people in the EU.
 - Regulates **applications and the use of technology** (not the technology itself)
 - Adopts a risk-based approach:
 - unacceptable risk,
 - high risk,
 - limited, or
 - minimal risk
 - Example of "unacceptable risk" in the EU's site: "All AI systems considered a clear threat to the safety, livelihoods and rights of people will be banned, from social scoring by governments to toys using voice assistance that encourages dangerous behaviour."
- US congressional hearing on "Oversight of Al"
- Digital "likeness"

- Voice is **trust**
- Voice is **emotional**
- Voice is **affective**

Thank you

Spyros Raptis Innoetics | Samsung Greece

s.raptis@samsung.comin /in/spyros-raptis

innoetics **SAMSUNG**