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• Main businesses and product examples:

• $40B revenues with strong growth plans
• NOT Mitsubishi Motors, Mitsubishi Heavy Industries, ...

Mitsubishi Electric Corporation

Automotive Equipment

Home Products

Public Systems

Space Systems Visual Information Systems

Energy Systems

Air Conditioning Systems

Factory Automation Systems

Semiconductors & Devices

Transportation Systems

Building Systems

Information & Comm. Systems
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• MERL was founded in 1991 in Cambridge, Mass
• Very academically-oriented and open industrial 

research labs, publishing almost everything
– 60 PhD researchers, working in multiple disciplines
– 150+ papers per year
– Many university collaborations

• Engaged in mid/long-term research on topics that 
we expect to be beneficial to our parent company

• Strong summer internship program
– 80+ interns throughout the year
– Almost all hires are PhD candidates

• Newly established post-doc research program

• Visit us online: http://www.merl.com 

MERL Profile & Research Areas

Control
Optimization
Robotics
Data Analytics

Artificial Intelligence 
Machine Learning

Computer Vision
Speech & Audio

Signal Processing
Computational Sensing

Communications
Electronic Devices

Multi-Physical Modeling
Applied Physics
Dynamical Systems
Electric Systems

http://www.merl.com/
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1) Realization of a human-centered AI society

• Principled design and use of machine learning has become centerstage
• Scientific communities looking hard at the problems around explainable, reliable & sustainable ML 

[see J-STSP special issue]
• At least for real-world engineering systems, being able to leverage what we know about the 

physics of these systems could provide a reasonable path forward

Motivation

2) Fair and non-discriminatory utilization

7) Compliance with laws and regulations

6) Development of AI and human resources

5) Transparency and accountability

4) Consideration for privacy

3) Ensuring safety and security

Mitsubishi Electric AI Ethics Policy
https://www.mitsubishielectric.com/en/sustainability/social/humanrights/aipolicy
Published 12/15/2021

https://www.mitsubishielectric.com/en/sustainability/social/humanrights/aipolicy/index.html
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• Terms might carry different meaning for different people and communities, but they are 
fairly interchangeable (at least to me)

• All methods and approaches aiming to enforce physical principles and constraints, 
while leveraging the power of data-driven machine learning techniques

Physics-(Inspired/Informed/Driven/Guided/Grounded) ML
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The Physics-Data Spectrum and PIML

PHYSICS-AGNOSTIC MACHINE LEARNING
• No physics-oriented model, based entirely on data
• Data-driven design, need (often, a lot of) data
• Fragile certificates – at mercy of data generating process

PHYSICS-INFORMED MACHINE LEARNING (PIML)
• Embed physics-based knowledge into machine learning methods
• More performance-optimal design possible with data injection
• Performance certificates more robust

PHYSICS-BASED DESIGN
• Based entirely on physical knowledge
• Model-environment mismatch can lead to suboptimal design
• Can certify performance

Exemplar PIML Mechanisms

[Guo, et al. SPM 2023]
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• Walkthrough some practical industrial problems where physics-grounded ML can be used
– Underground imaging of infrastructure
– Imaging of hazardous gases
– Airflow estimation for optimization & control
– System ID & driving adaptation for autonomous vehicles

• Highlight benefits of PGML, as well as key differences in problem setup and approaches

• Future outlook and perspectives

Outline & Goals for Rest of Talk
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Underground Imaging
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Problem Formulation

Reconstruct underground structure 
& permittivity distribution 

from sparse surface measurement

𝑓:	underground structure/permittivity distribution 
𝜔:	frequency 
𝑦!: ground truth measurements 
𝐻: sensor selection mask – selects the sensor measurements
𝑍: forward model - takes frequency, 𝜔, and structure 𝑓 as 
input, and predicts the wavefield

𝑓 = argmin"/
!

1
2 𝑦! −𝐻𝑍 𝜔, 𝑓 #

# +𝑅(𝑓)

Ill-posed due to sparse measurements
High computational cost
Hard to formulate
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1) Purely analytical
Build relationship between “measurement” and “velocity field” 
via Lippmann-Schwinger equation and solve via optimization 
       Challenges: 

– Linear model is easy to formulate but less accurate
– Exact model is hard to formulate for complicated backgrounds
– Problem is Ill-posed due to sparse measurements
– Slow computation for large domains 

2) Purely data-driven
Learn direct mapping via machine learning
       Challenges: 

– Require more data for reasonable generalization
– Only works for the set of sensor locations used 

during training 

Conventional Approaches

9
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• Learn the relationship between structure 
and measurements (forward model 𝑍)

– Faster and more general than classical approach 
(via Lippmann-Schwinger equation)

– Iterative Born approximates the LS inversion
– Designed ML architecture that mimics iterative 

Born for more accurate reconstruction

Physics-Ground ML Model
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QUin (d x d x 2)

𝑧

Auto-
decoder

Born FNO

𝑓 Predicted dynamics GT measurements

ℒ(𝑃𝑟𝑒𝑑, 𝐺𝑇)Gradient Update

Learned 
prior 

Learned 
simulation

• Leverage auto-encoder prior to learn the distribution of underground images

Zhao., Ma, Boufounos, Nabi, Mansour, "Deep Born Operator 
Learning for Reflection Tomographic Imaging,” ICASSP’23.
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Experimental Results
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Pure Data-Driven Approach

RECAP
• Learn both propagation dynamics and underground image model
• Use PGML-approach to model the propagation
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MIR source

DMD
Scene with gas leak

MIR 
detector

visible 
detector

Objective & Issues

• Target low-cost imaging of hazardous gases
• Certain hazardous gases are only visible in 

medium infrared (MIR)

• CMOS/CCD arrays only go up to near-IR, so 
MIR arrays are very expensive

Single-Pixel Imaging of Hazardous Gases

L1

L2

L3

MIR-SPI

Vis-SPI (optional)

Proposed Design: Consider single-pixel 
camera architecture consisting of
• Digital micro-mirror device (DMD)

• Single-pixel MIR detector

Since fast DMD is expensive, target 
acquisition that works with few snapshots
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• Gases can change dynamically over time.
• We model the evolution of the gas over time using 

a dynamical system model that constrains the 
reconstruction.
• A dynamical model of a gas can be written as:

 𝑥̇ = 𝑓 𝑥 	where 𝑓 𝑥  defines the system model
    e.g., Navier-Stokes equation
• Since 𝑓 𝑥 	is difficult to solve, we learn the dynamics from examples.

 

Learning the Dynamics of Gas for Image Reconstruction
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9
$

%
	 ℎ(𝑧)	 𝑑𝑡

Data Trajectory 𝑥$ Encoder

𝜑(𝑥)

Latent DynamicsNeural ODE

𝑧̂$ 𝑧̂%
Decoder @𝑥%

𝜓(𝑧) ℒ&'(' = 𝑥% − @𝑥% + 𝑥$ −𝜓(𝜑 𝑥$ )

Data-Driven Loss

ODE Prediction 
Loss

Auto-encoding 
Loss𝑥̇ = 𝑓(𝑥)
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𝒚 = Ax
• x is the observation data (sequence of images of the gas cloud as it changes over time)

• Every snapshot that is captured by the DMD corresponds to a single row in a measurement matrix A
• y is the measurement data (sequence of snapshots acquired within some duration of time)

Measurement Model & Data

14

Complete Observation
x

∗

Compressive Sensing 
Matrix A

Sum
𝒚

Number of 
snapshots

Measurement Data

Number of 
timesteps

NOTE: In contrast to the previous underground imaging setup
• Measurement model is in this problem is linear and known (DMD pattern)
• PGML only used to learn the observed signal dynamics (gas flow)
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Given the data and learned dynamics, we determine a solution 
that explains the data and satisfies the ODE constraints

Reconstruction Approach

15

ℒ!"#$%.(𝑧) = 𝑦 − 𝐴𝜓(𝑧) + 𝑧	 − (𝑧'+/
'

(
ℎ 𝑧 𝑑𝑧)

Reconstruction 
Loss

Compressive 
Sensing Loss

Loss for Prediction in 
Latent space

What the data tells us 
the trajectory should be

What the model thinks the 
trajectory should be

Latent-space 
representation
of the trajectory
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AE w/out Dynamics 
[2 samples/frame]

Our method
[32 samples/frame]

Our method
[2 samples/frame]

AE w/out Dynamics 
[32 samples/frame]

• Evaluate on simulated gas dynamics characterized by Burger’s equation. 
• Train a Neural ODE operator to learn dynamics with variety of initial conditions propagated through the same PDE.
• Test on a new set of dynamics observed using a single pixel imaging setup applied to a one-line DMD sensor.

Experimental Results

Results show that utilization of 
physical model can accurately 
reconstruct the images of the 
fluid with 1/16th the number of 
measurements as conventional 
single pixel imaging algorithms.
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• Closed-loop feedback control of dynamics systems governed by PDEs, such as airflow in a room, requires 
a real-time estimate of the current state from sparse measurements

• Standard estimation/filtering techniques don’t apply
– High-dimensionality of the system
– Nonlinearity of the dynamics
– Dependency on unknown physical parameters

Airflow Estimation for Optimization & Control
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𝐳!"# = 𝐟(𝐳!; 𝝁)
𝐲! = 𝐂𝐳!

state 𝐳! ∈ ℝ$, parameter 𝝁 ∈ ℝ%

measurement 𝐲! ∈ ℝ&

Given time series of sparse measurements 
{𝐲!, … , 𝐲"}, estimate the state 𝐳" without 
direct knowledge of 𝜇

• Governing parametric PDE, in discretized form:

• State estimation problem:

• Examples with Navier-Stokes as the PDE:
• Airflow in a room: parameter 𝝁 is outside 

temperature, number of people, ...
• Flow past a cylinder: parameter 𝜇 the 

Reynolds number Re

sensor locations
Mowlavi, Benosman, Nabi, arXiv (2023)
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Reinforcement Learning (RL) for Airflow Estimation
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Training dataset: Solution trajectories {𝐳!, … , 𝐳"} for 𝜇 = 𝜇 # , … , 𝜇 $

Step 1.  Construct reduced-order model (ROM)

𝐳!"# = 𝐟(𝐳!; 𝜇)

𝐲! = 𝐂𝐳!

state 𝐳! ∈ ℝ$

measurement 𝐲! ∈ ℝ%

Parametric discretized PDE

reduced state 𝐱! = 𝐔𝖳𝐳! ∈ ℝ'
𝑟 ≪ 𝑛, 𝐔 are 𝑟 leading PCA modes

𝐱!"# = 𝐀'𝐱!
𝐲! = 𝐂'𝐱!

reduced state 𝐱! ∈ ℝ'

measurement 𝐲! ∈ ℝ%

‘Averaged’ ROM over 𝜇

𝐀'  approximates the mean dynamics over 
all training trajectories 𝜇 = 𝜇 # , … , 𝜇 (

Step 2. Construct reduced-order state estimator (ROE)

;𝐱! = 𝐀' ;𝐱!)# +𝐊!(𝐲! − 𝐂'𝐀' ;𝐱!)#)

Kalman filter baseline (KF-ROE): 
linear; only model-based

Performs poorly when 𝐀'  is not a 
good model (due to changing 𝜇, etc)

;𝐱! = 𝐀' ;𝐱!)# +𝒩(𝐲! , ;𝐱!)#)

Reinforcement learning-trained estimator (RL-ROE): 
nonlinear; hybrid model-based and data-driven

Learn neural network 𝒩 offline from the 
training dataset using reinforcement learning

Mowlavi, Benosman, Nabi, arXiv (2023)
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• Example with Navier-Stokes PDE: Estimate the entire flow past a cylinder with sparse velocity 
measurements in its wake 

• The RL-ROE outperforms the KF-ROE for low number of sensors

Experimental Results: KF vs RL

19Mowlavi, Benosman, Nabi, arXiv (2023)
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§ Reuse ambient Wi-Fi waveforms for localization and sensing applications (occupancy sensing, indoor monitoring)

§ Frame-based localization: take one Wi-Fi frame/packet at a time and localize the object to a grid (classification) or 
regress its coordinate directly (regression)

§ Sequence-based localization & tracking: take multiple consecutive frames/packets and regress the whole trajectory. 
§ Existing methods use 
§ either Kalman filtering-like state estimation (with a fixed dynamic model) 
§ or recurrent neural networks (RNNs)

Wi-Fi Localization and Tracking

20

(a) Wi-Fi localization & tracking
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mmWave Wi-Fi Trajectory Estimation
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1. Low sampling rate: Frequent mmWave 
beam training results in significant 
overhead to Wi-Fi data transmission. 
Beam training rate is limited. 

2. Irregular sampling intervals: Different 
users (robots, human) need to contend 
for channel access and lead to irregularly 
sampled Wi-Fi data for individual users. 

Key Challenges
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• Learnable ordinary differential equation (ODE) to model dynamics in the high-dimensional latent space.
• ODE: address irregular sampling intervals at Encoder and allow asynchronous supervision at Decoder.
• Utilize the learned latent dynamics to improve localization performance. 

mmWave Wi-Fi Trajectory Estimation with Neural Dynamic Learning

Vaca-Rubio, C., Wang, P., et al. "mmWave Wi-Fi Trajectory Estimation 
with Continuous-Time Neural Dynamic Learning", ICASSP 2023.
 TOP 3% PAPER AWARD
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Performance Evaluation with In-House Experimental Data

23

(a) Frame-based 
(support vector regression-SVR) (b) Sequence-based (RNN) 

(c) Sequence-based (ours) 

A turtle bot moving in a rectangular 
trajectory with on-board mmWave Wi-Fi
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Learning friction models online
• Automated driving on varying road surfaces
• Uses efficient formulation and fast optimization solvers
• Physics-informed (particle filter) + learning (Gaussian process)

PIML for System Identification in Autonomous Vehicles

MERL CONFIDENTIAL. c�MERL, 2021.
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Figure 3. Estimated tire-friction function of the front wheel for one realization in closed-loop simulation with

multiple double lane-change maneuvers and surface changes for vref = 22m/s. The trace of ↵f is indicated in

black and its projection to the t-↵f plane is in black dashed.
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Figure 4. The tire-friction estimates (black solid) and estimated 2� confidence (gray area) at di↵erent time

steps for one realization in closed-loop simulation with multiple double lane-change maneuvers and surface

changes (see Fig. 3 for whole realization). The true tire-friction function is in red dashed, and the estimated

range of the ↵ values that have been excited are indicated by the green dashed vertical lines. An abrupt surface

change from asphalt to snow occurs right before t = 13s, and the estimator converges in less than 1s.

MERL CONFIDENTIAL. c�MERL, 2021
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“Online Bayesian Inference and Learning of Gaussian-Process 
State-Space Models”, K. Berntorp, Automatica 2021

“Friction-Adaptive Stochastic Predictive Control for Autonomous Vehicle Control”, Vaskov, 
S., Quirynen, R., Menner, M., Berntorp, K., Vehicle System Dynamics 2023

Estimates

Adaptive Stochastic MPC in CarSim Simulator

Real-time feasible in prototyping hardware

MERL CONFIDENTIAL. c�MERL, 2021.
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Figure 7. Stability constraints enforced for the controllers using the sti↵ness estimator (stiffness in magenta

and adaptivestiffness in blue), where the middle portion is on snow. Red dashed lines are the constraint

boundaries, where the road friction is calculated with (25) using the estimator output. The constraints tighten

during the snow portion. Although the di↵erences are minor, in this realization adaptivestiffness has more

constraint violations.

Table 3. Timing results for Algorithm 1 using the GP-based tire-friction estimator for two sets of combinations

of control horizon NMPC, prediction length T , and number of particles NPF on a dSPACE MicroAutoBox-II.

NMPC = 15
T = 0.75s
NPF = 200

NMPC = 20
T = 1s

NPF = 100
Mean Max Mean Max

QP iterations 3.65 25 6.57 25
SNMPC 16.4ms 29ms 23.1ms 37.8ms
Tire-friction estimator 10.4ms 10.5ms 5.5ms 5.6ms

Total turnaround time 26.7ms 39.4ms 28.6ms 43.3ms

tire-friction curve.

6.3. Realtime Feasibility for Embedded Implementation

To conclude the evaluation, we assess the real-time computational feasibility of the
proposed methods. In Tables 3 and 4, we show the closed-loop computation times of the
di↵erent friction-adaptive SNMPC on a dSPACE MicroAutoBox-II rapid prototyping
unit. The table includes the computation time for the same maneuver as before for
two di↵erent velocity references and two sets of combinations of the control horizon
length NMPC, time prediction horizon, and the number of particles NPF that give good
performance for the respective velocity reference. From these results, it is clear that
the computation time for both the SNMPC and the estimators scale linearly and the
total time remains well below the desired sampling time of 50ms.

MERL CONFIDENTIAL. c�MERL, 2021

SMPC + Friction estimator
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• Objective: Safely adapt vehicle behavior to optimize 
passenger comfort using driving data within physics-
informed vehicle model and safety constraints

• Maintain Safety Guarantees
– Fixed in controller: vehicle model, driving limits, 

computational structure

• Learn Performance Parameters
– Data-driven calibration: driving objectives, 

comfort parameters

Learning Algorithm

PIML for Safe and Comfortable Autonomous Driving

CONFIDENTIAL
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“Inverse learning for data-driven calibration of model-based statistical path planning”, M. Menner, K. 
Berntorp, M.N. Zeilinger, S. Di Cairano, IEEE Transactions on Intelligent Vehicles, 2021. 

Comfort: Accelerations/ 
velocities of planners 

match driving data

Safety: Planners 
avoid exceeding 

speed limit
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• Combining physical models and machine learning frameworks has many benefits
– Better performance and reliability
– More data-efficient networks
– Allows theoretical analysis and guarantees (e.g., safety, performance, etc.)

• Reviewed several industrial applications relevant to SPS community
– Imaging and sensing of dynamic systems
– Trajectory estimation and tracking
– Systems identification and motion planning

• Much more to do in this emerging field
– Improved techniques (e.g., learning and utilizing dynamics)
– Other physical models (e.g., geometric, optical, mechanical)
– Different tasks (e.g., control, optimization)
– Broader range of applications (buildings, EVs, digital twins, etc.)

Perspectives & Concluding Remarks
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• Data-driven & physical modeling go hand in hand for many real-world engineering systems

• Encourage SPS community to further embrace this intersection
– Very inter-disciplinary, should seek partners to push the boundaries further

§ Researcher-level to Society-level
– Should not feel limited in scope, SP techniques have much to offer 

§ Including applications that are not traditionally considered to be within SPS scope

Data-Driven

Physical Models

Perspectives & Concluding Remarks
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