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S lEs Mitsubishi Electric Corporation

Changes for the Better

 Main businesses and product examples:

Air Conditioning Systems Automotive Equipment
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Energy Systems Home Products

Space Systems Transportation Systems Visual Information Systems

* S40B revenues with strong growth plans
 NOT Mitsubishi Motors, Mitsubishi Heavy Industries, ...
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S umsuss MERL Profile & Research Areas

Changes for the Better

* MERL was founded in 1991 in Cambridge, Mass Artificial Intelligence
Machine Learning

* Very academically-oriented and open industrial Computer Vision
research labs, publishing almost everything Speech & Audio

— 60 PhD researchers, working in multiple disciplines
Control
Optimization
Robotics

Data Analytics

— 150+ papers per year
— Many university collaborations

* Engaged in mid/long-term research on topics that —

we expect to be beneficial to our parent company

Signal Processing

. . Computational Sensing
¢ Strong summer mternshlp pProgram Communications

— 80+ interns throughout the year Electronic Devices
— Almost all hires are PhD candidates

,,,,,,,,

Multi-Physical Modeling
Applied Physics
Dynamical Systems

Electric Systems /

* Newly established post-doc research program

* Visit us online: http://www.merl.com
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S wmsuss - \otivation

Changes for the Better

Mitsubishi Electric Al Ethics Policy

https://www.mitsubishielectric.com/en/sustainability/social/humanrights/aipolicy
Published 12/15/2021

1) Realization of a human-centered Al society
2) Fair and non-discriminatory utilization
3) Ensuring safety and security

4) Consideration for privacy oo Nt
5) Transparency and accountability EX p | a I n a b I | Ity

6) Development of Al and human resources

7) Compliance with laws and regulations

* Principled design and use of machine learning has become centerstage

* Scientific communities looking hard at the problems around explainable, reliable & sustainable ML
[see J-STSP special issue]

* At least for real-world engineering systems, being able to leverage what we know about the
physics of these systems could provide a reasonable path forward

© MERL
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SaliEs physics-(Inspired/Informed/Driven/Guided/Grounded) ML

Changes for the Better

* Terms might carry different meaning for different people and communities, but they are
fairly interchangeable (at least to me)

“PHYSICS-DRIVEN
MACHlNE LEARNING nature reviews physics

Explore content v  About the journal v  Publish with us v Subscribe

plications in
Computational Imaging
~ Port 1)

nature > nature reviews physics > review articles > article

Review Article | Published: 24 May 2021
Physics-informed machine learning

George Em Karniadakis &, loannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang & Liu Yang

Nature Reviews Physics 3, 422-440 (2021) | Cite this article

58k Accesses | 799 Citations | 168 Altmetric | Metrics

* All methods and approaches aiming to enforce physical principles and constraints,
while leveraging the power of data-driven machine learning techniques

© MERL



’ MITSUBISHI
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Changes for the Better

The Physics-Data Spectrum and PIML

PHYSICS-AGNOSTIC MACHINE LEARNING
* No physics-oriented model, based entirely on data

 Data-driven design, need (often, a lot of) data
* Fragile certificates — at mercy of data generating process

PHYSICS-INFORMED MACHINE LEARNING (PIML)
* Embed physics-based knowledge into machine learning methods

* More performance-optimal design possible with data injection
* Performance certificates more robust

PHYSICS-BASED DESIGN

* Based entirely on physical knowledge

* Model-environment mismatch can lead to suboptimal design
* Can certify performance

© MERL

Exemplar PIML Mechanisms

Learning After Learning With Learning With
Physics Processing Physics Loss Physics Models
Measurement Measurement Measurement
Physics Model l l
! | |
Raw Image
¥
[ A
ML With Physics-Guided
Physics-Guided ML Architecture
Loss Function
ML After Physics J
Processing { 1 l
Image Image Image

O Trainable Parameters ) Physics Operators

[Guo, et al. SPM 2023]




S ¥mmst Outline & Goals for Rest of Talk

Changes for the Better

* Walkthrough some practical industrial problems where physics-grounded ML can be used
— Underground imaging of infrastructure
— Imaging of hazardous gases
— Airflow estimation for optimization & control
— System ID & driving adaptation for autonomous vehicles

* Highlight benefits of PGML, as well as key differences in problem setup and approaches

* Future outlook and perspectives

© MERL



C.h"%f&%,;‘%%'%”' Underground Imaging

Problem Formulation

Reconstruct underground structure
& permittivity distribution
from sparse surface measurement

Radar Waves Object Data Collection

1 5 f:underground structure/permittivity distribution
f = argminy ZE [y — HZ(w, DI, + R() w: frequency
w

Y ground truth measurements

" d due t ‘ H: sensor selection mask — selects the sensor measurements
.-pose ue C_) >parse meastrements Z: forward model - takes frequency, w, and structure f as
High computational cost . : .
input, and predicts the wavefield
Hard to formulate

© MERL



S e Conventional Approaches

Changes for the Better

1) Purely analytical

Build relationship between “measurement” and “velocity field” f* =arg min {F(f):=D(f) +R(f)},
via Lippmann-Schwinger equation and solve via optimization h Fer
wnere
Challenges: ;
— Linear model is easy to formulate but less accurate D(f)= §||y—Z(f)||2,
— Exact model is hard to formulate for complicated backgrounds 2
— Problem is lll-posed due to sparse measurements R(f)=72\ > |Dafln|? +xc (F)-
— Slow computation for large domains d=1
. Geophysical u
2) Purely data'd riven Measurements . Y Geophysical
) ) ) ) i u(x, t) ] N properties
Learn direct mapping via machine learning X [ ] O y(x,z)
: O B
Challenges: —> B — [YraU] « g <«
— Require more data for reasonable generalization [ ] [
— Only works for the set of sensor locations used . 0
during training []

U, = J[ u(x,t)®,(x, t)dtdx Y., = [ v(x, 2)¥,,(x, z)dxdz

© MERL 9



e s Physics-Ground ML Model

Changes for the Better Sensor Iocatlons

i real i
Born FNO W

J U(dxdx2)
|
Q

F jL

Vv

B

* Learn the relationship between structure
and measurements (forward model Z)

— Faster and more general than classical approach
(via Lippmann-Schwinger equation)

Vi (dx dxw)

— Iterative Born approximates the LS inversion V(d*d*ﬂ%},{@ =@ = @%, w O w _.@ﬁ@f“‘“"”“
— Designed ML architecture that mimics iterative V““”’*W’P
Born for more accurate reconstruction f

Zhao., Ma, Boufounos, Nabi, Mansour, "Deep Born Operator
Learning for Reflection Tomographic Imaging,” ICASSP’23.

* Leverage auto-encoder prior to learn the distribution of underground images

f Predicted dynamics GT measurements
Learned Learned
prior simulation . )
AUtO- . . . 20 20
Born FNO
. deCOder - ) )
| J
Gradient Update

L(Pred,GT)
© MERL 10



e s Experimental Results

Changes for the Better

C

Pure Data-Driven Approach

Born FNO

PGML-Approach

RECAP
* Learn both propagation dynamics and underground image model
* Use PGML-approach to model the propagation

© MERL 11



e TS Single-Pixel Imaging of Hazardous Gases

Changes for the Better

Objective & Issues

* Target low-cost imaging of hazardous gases

MIR source
/4 * Certain hazardous gases are only visible in
medium infrared (MIR)
MIR-SPI
/ \ « CMOS/CCD arrays only go up to near-IR, so

MIR arrays are very expensive
MIR
detector

%ﬁf

Scene with gas leak

Proposed Design: Consider single-pixel
camera architecture consisting of

 Digital micro-mirror device (DMD)

p
p
e ——
,
, ’
——— e ———

* Single-pixel MIR detector

Vis-SPI (optional) Since fast DMD is expensive, target
acquisition that works with few snapshots

© MERL



e TS Learning the Dynamics of Gas for Image Reconstruction

Changes for the Better

e Gases can change dynamically over time.

* We model the evolution of the gas over time using
a dynamical system model that constrains the
reconstruction.

* A dynamical model of a gas can be written as:
x = f(x) where f(x) defines the system model

e.g., Navier-Stokes equation

* Since f(x) is difficult to solve, we learn the dynamics from examples.

Data Trajectory Encoder A Neur/aIODE LatenE’Dynamics Decoder X Data-Driven Loss
R
E (] | i Q data )
06 [ (oG at G g £ = llxr = 21l + [lxo — W Gro)|
e ' ODE Prediction Auto-encoding
x = f(x) Loss Loss

© MERL 13



S wmsuesi - Measurement Model & Data

Changes for the Better
Yy = AX
* X is the observation data (sequence of images of the gas cloud as it changes over time)

e Every snapshot that is captured by the DMD corresponds to a single row in a measurement matrix A

* yis the measurement data (sequence of snapshots acquired within some duration of time)

Complete Observation Compressive Sensing
X Matrix A Measurement Data

>um > Number of
timesteps
Number of
snapshots

Space
*
Space

Time

NOTE: In contrast to the previous underground imaging setup
 Measurement model is in this problem is linear and known (DMD pattern)
* PGML only used to learn the observed signal dynamics (gas flow)

© MERL
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S e Reconstruction Approach

Changes for the Better

Given the data and learned dynamics, we determine a solution
that explains the data and satisfies the ODE constraints

Reconstruction Compressive Loss for Prediction in
Loss Sensing Loss Latent space

T

creeon(z) =[ly — Y| + ||z = Gt | h2)d

\ Y o Y |

Latent-space What the data tells us What the model thinks the

representation the trajectory should be trajectory should be
of the trajectory

© MERL



C,"“E"EE%‘%%'%“' Experimental Results

hanges for the Detter
e Evaluate on simulated gas dynamics characterized by Burger’s equation.
* Train a Neural ODE operator to learn dynamics with variety of initial conditions propagated through the same PDE.
* Test on a new set of dynamics observed using a single pixel imaging setup applied to a one-line DMD sensor.

Our method Our method AE w/out Dynamics  AE w/out Dynamics
[32 samples/frame] [2 samples/frame] [32 samples/frame]  [2 samples/frame]

Results show that utilization of
physical model can accurately
reconstruct the images of the
fluid with 1/16th the number of
measurements as conventional
single pixel imaging algorithms.

Space
Space

Time Time Time Time

1.00 - 1.00 - 1.00 - 1.00 + 1.00 ~

0.75 - 0.75 0.75 0.75 1 0.75 1

0.50 - 0.50 0.50 0.50 1 0.50 1

0.25 0.25 - 0.25 - 0.25 - 0.25 -

0.00 A 0.00 A

0.00 0.00 - 0.00 -
—0.25 - -0.25 -

—0.25 A —0.25 A —0.25 A

—0.50 T T T —0.50

-0.50 T T T —0.50 —0.50
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S lisEs Ajrflow Estimation for Optimization & Control

Changes for the Better

* Closed-loop feedback control of dynamics systems governed by PDEs, such as airflow in a room, requires
a real-time estimate of the current state from sparse measurements

« Standard estimation/filtering techniques don’t apply
— High-dimensionality of the system
— Nonlinearity of the dynamics
— Dependency on unknown physical parameters

* Governing parametric PDE, in discretized form: « Examples with Navier-Stokes as the PDE:

* Airflow in a room: parameter u is outside

Zpoq = £(Zy; state z,, € R™, parameter u € R
a1 = H(z 1) “ P “ temperature, number of people, ...

Vi = Czp measurement y; € RP .
* Flow past a cylinder: parameter u the

Reynolds number Re

e State estimation problem:

Re = 35, reference Re = 65, reference

1.2
1.0
0.8
0.6
0.4
0.2
i 0.0

Given time series of sparse measurements
{Yo, -, Vi }, estimate the state z; without
direct knowledge of u

o000 0o0orkH
oHrWhOOORN
SONOAOON®

sensor locations

© MERL  Mowlavi, Benosman, Nabi, arXiv (2023)



2l B Reinforcement Learning (RL) for Airflow Estimation

Changes for the Better

Training dataset: Solution trajectories {z,, ..., Z; } for u = ,u(l), . /,L(Q)

Step 1. Construct reduced-order model (ROM)

Parametric discretized PDE

Zr+1 = £(Zg; 1) state z, € R"

y, = Cz, measurement y; € RP

l

reduced state x, = U'z, € R"
r &K n, Uare r leading PCA modes

l

‘Averaged’ ROM over u

Xi+1 = A Xp reduced state x;,, € R”

Vi = CrX measurement y;, € RP

A, approximates the mean dynamics over
all training trajectories u = ™, ..., u@

© MERL  Mowlavi, Benosman, Nabi, arXiv (2023)

Kalman filter baseline (KF-ROE):
linear; only model-based

> X = A X1 + Kp(yx — CLA Xk _1)

Performs poorly when A, is not a
good model (due to changing u, etc)

Reinforcement learning-trained estimator (RL-ROE):

nonlinear; hybrid model-based and data-driven

> X = ApXp—1 + N (Vi X-1)

Learn neural network IV offline from the
training dataset using reinforcement learning

Step 2. Construct reduced-order state estimator (ROE)

18



e TS Experimental Results: KF vs RL

Changes for the Better

 Example with Navier-Stokes PDE: Estimate the entire flow past a cylinder with sparse velocity

measurements in its wake

The RL-ROE outperforms the KF-ROE for low number of sensors

Re = 105, reference

=
o

Re = 35, reference Re = 65, reference
1.27
i 111 i
”~ 0.95 — -
C— pieg : ’
0 ~ 0.64 T )
- 0.48 » -
5 0.32 i
0.16
T T T OOO I !

COO0000rH
OHWHOWHN
CON®OHOUIF~

Re = 35, RL-ROE Re = 65, RL-ROE

CO00EOOHH
OHWHAO®W N
CONOROU K~

Re = 35, KF-ROE Re = 65, KF-ROE

CO00000OHH
O WHROOWOKFN
OCONOLOUN N

© MERL  Mowlavi, Benosman, Nabi, arXiv (2023)
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Re = 105, RL-ROE

Re = 105, KF-ROE

error (time avg)

o
N
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RL-ROE (train)

RL-ROE (test)

® KF-ROE (train)

e KF-ROE (test)
-=-=- |lower bound
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Reynolds number Re
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S MEEH Wi-Fi Localization and Tracking

= Reuse ambient Wi-Fi waveforms for localization and sensing applications (occupancy sensing, indoor monitoring)

= Frame-based localization: take one Wi-Fi frame/packet at a time and localize the object to a grid (classification) or
regress its coordinate directly (regression)

= Sequence-based localization & tracking: take multiple consecutive frames/packets and regress the whole trajectory.

= Existing methods use
= either Kalman filtering-like state estimation (with a fixed dynamic model)

= or recurrent neural networks (RNNs)

(a) Wi-Fi localization & tracking (b) Occupancy sensing (¢) Human (pose) monitoring
mg\R " et
WiF: device ‘
[empty] , @
fempty] \’ R\ R'\

WFi device

Acc: 88.8% over 8 poses

foret f" femety) &
= IMU & a ac: 802.11ac WIFI (SGMz2)
- < ad: 802.11ad WiF) (60GMz2)
i N - -
% orientation] . -
AP pocaﬁoﬂ - g ﬂ‘ - - Ly 5 .
" - - ------""-: <~ s X = i-i .
= g o - = - - ~ A
- s N - - - ‘J 1
S 2 = Acc: 91.2% -
-

© MERL 20



S isEs mmWave Wi-Fi Trajectory Estimation

Changes for the Better

Key Challenges

1. Low sampling rate: Frequent mmWave
AP beam training results in significant
overhead to Wi-Fi data transmission.
- = Beam training rate is limited.

2. Irregular sampling intervals: Different
users (robots, human) need to contend
for channel access and lead to irregularly
sampled Wi-Fi data for individual users.

Beam SNR
(at user)

© MERL 21



S liEs mmWave Wi-Fi Trajectory Estimation with Neural Dynamic Learning

Changes for the Better

e Learnable ordinary differential equation (ODE) to model dynamics in the high-dimensional latent space.
ODE: address irregular sampling intervals at Encoder and allow asynchronous supervision at Decoder.
e Utilize the learned latent dynamics to improve localization performance.

Original Waveform Decoder: Map latent dynamic states in the
into original waveform space (Reconstruction)

-
ty tn+1 tn ty ) ws
9, 0 O—> time .- = = . s =
b.\' n+l bn bo l '
t : !
Beam SNR ; I -
" . ‘
l l ' (at user) .BOW I ‘Baw ng IBO"’ i {?J

't ty tnst In time,
l origina] sample time ! . Dynamics (ODE) Learning in
0, " h 0y, e X 7] GZM iy contmuous-tlme latent space
RNN N=1 RNN 0 : NEN " ODE(® ) Sy t .
_’ oDE | ¥ | Y ODE L3 RNN Mo, ~ 20 ) 21/ \ (04 tier)
Rgr RO,. Ror v Z
A il
Iy Ty ty o Asynchronous o, o, to,. tume
. L . queried time :
Encpder. Mgp irregular Wi-Fi dgta m_tqg Co, Co, | |Co, Co,
continuous-time latent space & infer initial O
conditions gt é
e VY : - ¥ 0 L EN43
P C) ~4 \ @

Vaca-Rubio, C., Wang, P., et al. "mmWave Wi-Fi Trajectory Estimation - Lx Observable trajectory

with Continuous-Time Neural Dynamic Learning", ICASSP 2023.
TOP 3% PAPER AWARD Observable State-Space Decoder: Map latent dynamic states into
observable state-space (e.g., coordinates, velocity, orientation) at
© MERL asynchronous/new queried time instances (Regularization)



S tes performance Evaluation with In-House Experimental Data

Changes for the Better

A turtle bot moving in a rectangular
trajectory with on-board mmWave Wi-Fi

40

L &

Table 1. Localization errors (m) on beamSNR localization dataset.

Mean Median CDF@0.9

SVR 042 0.15 1.05
FCNNR 046 0.11 1.43
RNN Expdecay 0.40 0.18 1.12
RNN At 033 0.13 1.09
SDND (ours) 0.34 0.11 0.88
DDND+KL (ours) 0.26  0.11 0.74
DDND (ours) 0.17  0.09 0.52

© MERL

(a) Frame-based
(support vector regression-SVR)

-
Qrounatruth

% SN

"3

(b) Sequence-based (RNN)

(c) Sequence-based (ours)

: # B T ey
. ..0“
| & 3
E 2 5 a 4 o.'o
- “ .og' :
| -3 )
. - .o’
......*

-05 00 05 10 15
X (m)

20 25 30
23



Sl liEs PIML for System ldentification in Autonomous Vehicles

Changes for the Better

— Adaptive
—Snow Model
—— Asphalt Model

Learning friction models online Adaptive Stochastic MPC in CarSim Simulator
« Automated driving on varying road surfaces Sl C Cuettem oo

» Uses efficient formulation and fast optimization solvers
* Physics-informed (particle filter) + learning (Gaussian process)

Real-time feasible in prototyping hardware
SMPC + Friction estimator

Friction estimator Model Predictive Control
— Nype =15 Nype =20 .
T / T = 0.75s T =1s IVESER RS Vehicle
e Ty / Npp = 200 Npp = 100 _]I' -O8 : Confidence |1 > k)
. Mean Max Mean Max el l l > k=0
o : : Estimates (Vk€{0,...,N —1},
wid H ~
QP iterations 3.65 25 657 25 9 : ! g 0= g1 — £(xs, By, 0),
SNMPC 16.4ms  29ms  23.1ms 37.8ms w | . . s.t. { Py =AP.A!l +B.XB;, P,=P,
Tire-friction estimator 10.4ms 10.5ms 5.5ms  5.6ms éhp anL le 0=x%y—X,,
| _— \Pr(h(xk,uk)SO) 21—6
Total turnaround time 26.7ms 39.4ms 28.6ms 43.3ms f
production sensing data
“Friction-Adaptive Stochastic Predictive Control for Autonomous Vehicle Control”, Vaskov, “Online Bayesian Inference and Learning of Gaussian-Process
S., Quirynen, R., Menner, M., Berntorp, K., Vehicle System Dynamics 2023 State-Space Models”, K. Berntorp, Automatica 2021

© MERL



S lEs PIML for Safe and Comfortable Autonomous Driving

Changes for the Better

e Objective: Safely adapt vehicle behavior to optimize

passenger comfort using driving data within physics- — Driver 1 ----Planner 1 | 11
. . . ~ —r ~ ———
informed vehicle model and safety constraints | | s 50
- > ACL [m]
* Maintain Safety Guarantees 40 - 4 -1
. . . . — ‘
— Fixed in controller: vehicle model, driving limits, 30 -Lat. Acc. 14
computational structure 20 L[m/s°] | |2
/
10 Velocity [km/h] | Ao N
e Learn Performance Parameters 0 | | | |
— Data-driven calibration: driving objectives, Safety: Planners Comfort: Accelerations/
comfort parameters avoid exceeding velocities of planners
speed limit match driving data
—— Driver 3----Planner 3 M 11
. . ‘ 3
DIVING Learning (AH'%OE't)hm 92| Venicle Motion
Data max  p(f]data Planner 40 | E
S. t. 6 e Cg 30 B B
Vehicle ' ' 20 .
Model 10 ' Velocity [km/h] | A
“Inverse learning for data-driven calibration of model-based statistical path planning”, M. Menner, K. straig ht turn straight turn

Berntorp, M.N. Zeilinger, S. Di Cairano, IEEE Transactions on Intelligent Vehicles, 2021.

© MERL CONFIDENTIAL



e MR Perspectives & Concluding Remarks

Changes for the Better

* Combining physical models and machine learning frameworks has many benefits
— Better performance and reliability
— More data-efficient networks
— Allows theoretical analysis and guarantees (e.g., safety, performance, etc.)

* Reviewed several industrial applications relevant to SPS community
— Imaging and sensing of dynamic systems
— Trajectory estimation and tracking
— Systems identification and motion planning

* Much more to do in this emerging field
— Improved techniques (e.g., learning and utilizing dynamics)
— Other physical models (e.g., geometric, optical, mechanical)
— Different tasks (e.g., control, optimization)
— Broader range of applications (buildings, EVs, digital twins, etc.)

© MERL



e MR Perspectives & Concluding Remarks

Changes for the Better

* Data-driven & physical modeling go hand in hand for many real-world engineering systems

Data-Driven
\ Physical Models

* Encourage SPS community to further embrace this intersection
— Very inter-disciplinary, should seek partners to push the boundaries further
= Researcher-level to Society-level

— Should not feel limited in scope, SP techniques have much to offer
» |ncluding applications that are not traditionally considered to be within SPS scope

SHo (G Em LS e

Carbon neutral Circular economy Safety/Security Inclusion Well-being
Decarbonize society Build a circular society Resilient society Society that values diversity Vibrant lives

© MERL
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Changes for the Better
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